Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.394
Filtrar
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 358-364, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660899

RESUMO

OBJECTIVES: To study the distribution, drug resistance, and biofilm characteristics of carbapenem-resistant Acinetobacter baumannii (CRAB) isolated from hospitalized children, providing a reference for the prevention and treatment of CRAB infections in hospitalized children. METHODS: Forty-eight CRAB strains isolated from January 2019 to December 2022 were classified into epidemic and sporadic strains using repetitive extragenic palindromic sequence-based polymerase chain reaction. The drug resistance, biofilm phenotypes, and gene carriage of these two types of strains were compared. RESULTS: Both the 22 epidemic strains and the 26 sporadic strains were producers of Class D carbapenemases or extended-spectrum ß-lactamases with downregulated outer membrane porins, harboring the VIM, OXA-23, and OXA-51 genes. The biofilm formation capability of the sporadic strains was stronger than that of the epidemic strains (P<0.05). Genes related to biofilm formation, including Bap, bfs, OmpA, CsuE, and intI1, were detected in both epidemic and sporadic strains, with a higher detection rate of the intI1 gene in epidemic strains (P<0.05). CONCLUSIONS: CRAB strains are colonized in the hospital, with sporadic strains having a stronger ability to form biofilms, suggesting the potential for forming new clonal transmissions in the hospital. Continuous monitoring of the epidemic trends of CRAB and early warning of the distribution of epidemic strains are necessary to reduce the risk of CRAB infections in hospitalized children.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Biofilmes , Carbapenêmicos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Biofilmes/efeitos dos fármacos , Carbapenêmicos/farmacologia , Humanos , Criança , Infecções por Acinetobacter/microbiologia , Pré-Escolar , beta-Lactamases/genética , Criança Hospitalizada , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Feminino , Lactente , Masculino , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
2.
World J Microbiol Biotechnol ; 40(5): 146, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538920

RESUMO

Bacterial species within the Acinetobacter baumannii-calcoaceticus (Acb) complex are very similar and are difficult to discriminate. Misidentification of these species in human infection may lead to severe consequences in clinical settings. Therefore, it is important to accurately discriminate these pathogens within the Acb complex. Raman spectroscopy is a simple method that has been widely studied for bacterial identification with high similarities. In this study, we combined surfaced-enhanced Raman spectroscopy (SERS) with a set of machine learning algorithms for identifying species within the Acb complex. According to the results, the support vector machine (SVM) model achieved the best prediction accuracy at 98.33% with a fivefold cross-validation rate of 96.73%. Taken together, this study confirms that the SERS-SVM method provides a convenient way to discriminate between A. baumannii, Acinetobacter pittii, and Acinetobacter nosocomialis in the Acb complex, which shows an application potential for species identification of Acinetobacter baumannii-calcoaceticus complex in clinical settings in near future.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Humanos , Análise Espectral Raman , Infecções por Acinetobacter/microbiologia
3.
Environ Int ; 186: 108603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547543

RESUMO

Acinetobacter baumannii has become a prominent nosocomial pathogen, primarily owing to its remarkable ability to rapidly acquire resistance to a wide range of antimicrobial agents and its ability to persist in diverse environments. However, there is a lack of data on the molecular epidemiology and its potential implications for public health of A. baumannii strains exhibiting clinically significant resistances that originate from non-clinical environments. Therefore, the genetic characteristics and resistance mechanisms of 80 A. baumannii-calcoaceticus (ABC) complex isolates, sourced from environments associated with poultry and pig production, municipal wastewater treatment plants (WWTPs), and clinical settings, were investigated. In total, our study classified 54 isolates into 29 previously described sequence types (STs), while 26 isolates exhibited as-yet-unassigned STs. We identified a broad range of A. baumannii STs originating from poultry and pig production environments (e.g., ST10, ST238, ST240, ST267, ST345, ST370, ST372, ST1112 according to Pasteur scheme). These STs have also been documented in clinical settings worldwide, highlighting their clinical significance. These findings also raise concerns about the potential zoonotic transmission of certain STs associated with livestock environments. Furthermore, we observed that clinical isolates exhibited the highest diversity of antimicrobial resistance genes (ARGs). In contrast to non-clinical isolates, clinical isolates typically carried a significantly higher number of ARGs, ranging from 10 to 15. They were also the exclusive carriers of biocide resistance genes and acquired carbapenemases (blaOXA-23, blaOXA-58, blaOXA-72, blaGIM-1, blaNDM-1). Additionally, we observed that clinical strains displayed an increased capacity for carrying plasmids and undergoing genetic transformation. This heightened capability could be linked to the intense selective pressures commonly found within clinical settings. Our study provides comprehensive insights into essential aspects of ABC isolates originating from livestock-associated environments and clinical settings. We explored their resistance mechanisms and potential implications for public health, providing valuable knowledge for addressing these critical issues.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Gado , Águas Residuárias , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Águas Residuárias/microbiologia , Animais , Gado/microbiologia , Antibacterianos/farmacologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Humanos , Suínos , Farmacorresistência Bacteriana/genética , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Aves Domésticas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
4.
Arch Microbiol ; 206(4): 169, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489041

RESUMO

Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Acinetobacter baumannii/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
5.
J Microbiol Immunol Infect ; 57(2): 300-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350840

RESUMO

PURPOSES: This study determined the synergy of polymyxin B (POLB) and colistin (COL) with 16 other tested antimicrobial agents in the inhibition of multidrug-resistant Acinetobacter baumannii (MDR-AB). METHODS: We used chequerboard assays to determine synergy between the drugs against 50 clinical MDR-AB from a tertiary hospital in the Zhejiang province in 2019, classifying combinations as either antagonistic, independent, additive, or synergistic. The efficacy of hit combinations which showed highest synergistic rate were confirmed using time-kill assays. RESULTS: Both POLB and COL displayed similar bactericidal effects when used in combination with these 16 tested drugs. Antagonism was only observed for a few strains (2%) exposed to a combination of POLB and cefoperazone/sulbactam (CSL). A higher percentage of synergistic combinations with POLB and COL were observed with rifabutin (RFB; 90%/96%), rifampicin (RIF; 60%/78%) and rifapentine (RFP; 56%/76%). Time-kill assays also confirmed the synergistic effect of POLB and rifamycin class combinations. 1/2 MIC rifamycin exposure can achieve bacterial clearance when combined with 1/2 MIC POLB or COL. CONCLUSION: Nearly no antagonism was observed when combining polymyxins with other drugs by both chequerboard and time-kill assays, suggesting that polymyxins may be effective in combination therapy. The combinations of POLB/COL with RFB, RIF, and RFP displayed neat synergy, with RFB showing the greatest effect.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Polimixina B/farmacologia , Sinergismo Farmacológico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
6.
Int J Antimicrob Agents ; 63(4): 107106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325724

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB), an important opportunistic pathogen, is a major cause of healthcare-associated infections. The polymyxins (colistin and polymyxin B) are the last line of defense in the treatment of CRAB infections, and there is an urgent need to develop novel alternative therapeutic strategies. In this study, we found that the antimicrobial peptide DvAMP exhibited satisfactory antibacterial and antibiofilm activity against CRAB. In addition, DvAMP showed tolerable stability in salt ions and serum and exhibited low toxicity in vivo. Investigation of the underlying mechanism demonstrated that DvAMP disrupts cell membrane structural integrity and specifically binds to exogenous lipopolysaccharides (LPS) and phospholipids (PG/CL), resulting in increased membrane permeability and dissipating proton motive force (PMF), further reducing intracellular ATP levels and inducing ROS accumulation, leading to bacterial death. Furthermore, DvAMP therapy efficiently improved survival rates and decreased the bacterial load in the lungs of mice in a mouse pneumonia model, showing that DvAMP administration reduced CRAB susceptibility to lung infection. These results indicate that the peptide DvAMP is a promising alternative therapeutic agent to combat CRAB infection.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Animais , Camundongos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Peptídeos Antimicrobianos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
7.
J Infect Dev Ctries ; 18(1): 101-105, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38377096

RESUMO

INTRODUCTION: Acinetobacter baumannii (A. baumannii) is an opportunistic pathogenic bacterium mainly associated with hospital acquired infections and in immunocompromised individuals who stay in hospitals for a long time. In recent years, it has become increasingly resistant to many different types of antibiotics. The production of the metallo-beta-lactamase (MBL) enzyme is one of the primary causes of this resistance. This study aimed to detect the presence of MBL genes that belong to the verona integrin metallo-ß-lactamase (bla-VIM) and imipenemase (bla-IMP) groups in the isolates of Acinetobacter baumannii from burn patients. METHODOLOGY: One hundred and seventeen (117) isolates of A. baumannii were obtained from patient specimens using traditional methods followed by using the VITEK 2 (BioMérieux, Les Pennes-Mirabeau, France) identification system. Metallo ß-lactamases were detected in the imipenem-resistant strains by using imipenem disks on Muller-Hinton agar. The polymerase chain reaction (PCR) technique was utilized to examine 117 isolates for the detection of MBLs encoding genes such as bla-VIM, and bla-IMP. RESULTS: Imipenem resistance was detected in 78.6% of the patients. The PCR assays of the isolates identified bla-VIM-1, bla-VIM-2, bla-IMP-1 and bla-IMP-2 genes at the rates of 17%, 40.1%, 29.9% and 4.2%, respectively. CONCLUSIONS: The findings suggest that the majority of A. baumannii isolates harbour one or more of the detected genes, signifying that the production of MBLs plays a pivotal role in resistance mechanisms.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Queimaduras , Humanos , Iraque , Infecções por Acinetobacter/microbiologia , Reação em Cadeia da Polimerase/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Imipenem , beta-Lactamases/genética , Queimaduras/complicações , Testes de Sensibilidade Microbiana
8.
Drug Resist Updat ; 73: 101061, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301486

RESUMO

AIMS: Antimicrobial resistance is a global threat to human health, and Acinetobacter baumannii is a paradigmatic example of how rapidly bacteria become resistant to clinically relevant antimicrobials. The emergence of multidrug-resistant A. baumannii strains has forced the revival of colistin as a last-resort drug, suddenly leading to the emergence of colistin resistance. We investigated the genetic and molecular basis of colistin resistance in A. baumannii, and the mechanisms implicated in its regulation and dissemination. METHODS: Comparative genomic analysis was combined with genetic, biochemical, and phenotypic assays to characterize Φ19606, an A. baumannii temperate bacteriophage that carries a colistin resistance gene. RESULTS: Ф19606 was detected in 41% of 523 A. baumannii complete genomes and demonstrated to act as a mobile vehicle of the colistin resistance gene eptA1, encoding a functional lipid A phosphoethanolamine transferase. The eptA1 gene is coregulated with its chromosomal homolog pmrC via the PmrAB two-component system and confers colistin resistance when induced by low calcium and magnesium levels. Resistance selection assays showed that the eptA1-harbouring phage Ф19606 promotes the emergence of spontaneous colistin-resistant mutants. CONCLUSIONS: Φ19606 is an unprecedented example of a self-transmissible phage vector implicated in the dissemination of colistin resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
9.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38383758

RESUMO

AIMS: Antibiotic management of infections caused by Acinetobacter baumannii often fails due to antibiotic resistance (especially to carbapenems) and biofilm-forming strains. Thus, the objective here was to evaluate in vitro the antibacterial and antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) combined with meropenem, against multidrug-resistant isolates of A. baumannii. METHODS AND RESULTS: In this study, A. baumannii ATCC® 19606™ and four carbapenem-resistant A. baumannii (Ab) strains were used. The antibacterial activity of Bio-AgNP and meropenem was evaluated through broth microdilution. The effect of the Bio-AgNP association with meropenem was determined by the checkboard method. Also, the time-kill assay and the integrity of the bacterial cell membrane were evaluated. Furthermore, the antibiofilm activity of Bio-AgNP and meropenem alone and in combination was determined. Bio-AgNP has antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration ranging from 0.46 to 1.87 µg ml-1. The combination of Bio-AgNP and meropenem showed a synergistic and additive effect against Ab strains, and Bio-AgNP was able to reduce the MIC of meropenem from 4- to 8-fold. Considering the time-kill of the cell, meropenem and Bio-AgNP when used in combination reduced bacterial load to undetectable levels within 10 min to 24 h after treatment. Protein leakage was observed in all treatments evaluated. When combined, meropenem/Bio-AgNP presents biofilm inhibition for Ab2 isolate and ATCC® 19606™, with 21% and 19%, and disrupts the biofilm from 22% to 50%, respectively. The increase in nonviable cells in the biofilm can be observed after treatment with Bio-AgNP and meropenem in carbapenem-resistant A. baumannii strains. CONCLUSIONS: The combination of Bio-AgNP with meropenem can be a therapeutic option in the treatment of infections caused by carbapenem-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Nanopartículas Metálicas , Humanos , Meropeném/farmacologia , Prata/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Sinergismo Farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
10.
BMC Microbiol ; 24(1): 55, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341536

RESUMO

BACKGROUND: The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS: The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS: The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Pneumonia , Anticorpos de Cadeia Única , Humanos , Animais , Camundongos , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
11.
Nature ; 625(7995): 566-571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172634

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as a major global pathogen with limited treatment options1. No new antibiotic chemical class with activity against A. baumannii has reached patients in over 50 years1. Here we report the identification and optimization of tethered macrocyclic peptide (MCP) antibiotics with potent antibacterial activity against CRAB. The mechanism of action of this molecule class involves blocking the transport of bacterial lipopolysaccharide from the inner membrane to its destination on the outer membrane, through inhibition of the LptB2FGC complex. A clinical candidate derived from the MCP class, zosurabalpin (RG6006), effectively treats highly drug-resistant contemporary isolates of CRAB both in vitro and in mouse models of infection, overcoming existing antibiotic resistance mechanisms. This chemical class represents a promising treatment paradigm for patients with invasive infections due to CRAB, for whom current treatment options are inadequate, and additionally identifies LptB2FGC as a tractable target for antimicrobial drug development.


Assuntos
Antibacterianos , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Animais , Humanos , Camundongos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Antibacterianos/classificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Modelos Animais de Doenças , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Desenvolvimento de Medicamentos
12.
Acta Microbiol Immunol Hung ; 71(1): 25-36, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38261035

RESUMO

Cefiderocol (CFDC) is a first-in-class siderophore cephalosporin with potent activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Acinetobacter baumannii. The present study aimed to explore the CFDC resistance mechanisms of an extensively drug-resistant A. baumannii isolate from Bulgaria. The A. baumannii Aba52 strain (designated Aba52) was obtained in 2018 from a blood sample of a critically ill patient. The methodology included antimicrobial susceptibility testing, whole-genome sequencing (WGS), reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), multilocus sequence typing, and phylogenomic analysis. The isolate demonstrated high-level resistance to CFDC (MIC = 64 mg L-1), resistance to carbapenems, aminoglycosides, fluoroquinolones, sulfamethoxazole-trimethoprim, and tigecycline, as well as susceptibility only to colistin. WGS-based resistome analysis revealed the existence of blaOXA-23, blaOXA-66 and blaADC-73. Seven non-conservative missense mutations affecting iron transport-related genes were detected: exbD4 (p.Ser61Pro), tonB2 (p.Ala268Val), bauA (p.Thr61Ala), ftsI (p.Ala515Val), piuA (p.Gly216Val), and feoB (p.Ser429Pro and p.Thr595Ala). A variety of virulence factors associated with adherence, biofilm formation, enzyme production, immune invasion, iron uptake, quorum sensing, and two-component regulatory systems were identified, suggesting a significant pathogenic potential of Aba52. The performed RT-qPCR analysis showed diminished (0.17) and absent expression of the pirA and piuA genes, respectively, encoding TonB-dependent siderophore receptors. Aba52 belonged to the widespread high-risk sequence type ST2 (Pasteur scheme). To the best of our knowledge, this is the first documented case of CFDC-resistant A. baumannii in Bulgaria even though, CFDC has never been applied in our country. The emerging resistance highlights the crucial need for nationwide surveillance targeting the implementation of novel antibiotics.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Bulgária , 60607 , Farmacorresistência Bacteriana Múltipla/genética , Ferro , Testes de Sensibilidade Microbiana
13.
BMC Infect Dis ; 24(1): 35, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166743

RESUMO

BACKGROUND: In recent years, Acinetobacter baumannii-calcoaceticus complex (ABC) infections have attracted attention, mainly because of the impact of carbapenem-resistant isolates in hospital-acquired infections. However, acute community-acquired ABC infections are not uncommon in warm and humid countries, where they are responsible for community-acquired infections with specific clinical features. To date, such infection has not been reported in France. CASE PRESENTATION: We report the case of a 55-year-old non-immunocompromised patient living in France with no known risk factors for community-acquired ABC infections who presented pneumonia with bloodstream infection due to wild-type A. pittii. The outcome was favorable after 7 days of antibiotic treatment with cefepime. We confirmed bacterial identification with whole-genome sequencing, and we examined the A. pitii core-genome phylogeny for genomic clusters. CONCLUSIONS: This situation is uncommon in Europe and occurred after a heat wave in France with temperatures above 38 °C. Herein, we discuss the possibility that this pneumonia may be emerging in the current context of global warming.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Infecções Comunitárias Adquiridas , Pneumonia , Humanos , Pessoa de Meia-Idade , Infecções Comunitárias Adquiridas/diagnóstico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Temperatura Alta , Acinetobacter/genética , Antibacterianos/uso terapêutico , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , França , Testes de Sensibilidade Microbiana
14.
Microbiol Spectr ; 12(2): e0295623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38205963

RESUMO

Carbapenem-resistant Acinetobacter baumannii causes one of the most difficult-to-treat nosocomial infections. Polycationic drugs like polymyxin B or colistin and tetracycline drugs such as doxycycline or minocycline are commonly used to treat infections caused by carbapenem-resistant A. baumannii. Here, we show that a subpopulation of cells associated with the opaque/translucent colony phase variation by A. baumannii AB5075 displays differential tolerance to subinhibitory concentrations of colistin and tetracycline. Using a variety of microscopic techniques, we demonstrate that extracellular polysaccharide moieties mediate colistin tolerance to opaque A. baumannii at single-cell level and that mushroom-shaped biofilm structures protect opaque bacteria at the community level. The colony switch phenotype is found to alter several traits of A. baumannii, including long-term survival under desiccation, tolerance to ethanol, competition with Escherichia coli, and intracellular survival in the environmental model host Acanthamoeba castellanii. Additionally, our findings suggest that extracellular DNA associated with membrane vesicles can promote colony switching in a DNA recombinase-dependent manner.IMPORTANCEAs a WHO top-priority drug-resistant microbe, Acinetobacter baumannii significantly contributes to hospital-associated infections worldwide. One particularly intriguing aspect is its ability to reversibly switch its colony morphotype on agar plates, which has been remarkably underexplored. In this study, we employed various microscopic techniques and phenotypic assays to investigate the colony phase variation switch under different clinically and environmentally relevant conditions. Our findings reveal that the presence of a poly N-acetylglucosamine-positive extracellular matrix layer contributes to the protection of bacteria from the bactericidal effects of colistin. Furthermore, we provide intriguing insights into the multicellular lifestyle of A. baumannii, specifically in the context of colony switch variation within its predatory host, Acanthamoeba castellanii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Acinetobacter baumannii/genética , Variação de Fase , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Carbapenêmicos/farmacologia , Biofilmes , DNA , Farmacorresistência Bacteriana Múltipla/genética
15.
Microbiol Spectr ; 12(2): e0251123, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214512

RESUMO

Colistin resistance in Acinetobacter baumannii is mediated by multiple mechanisms. Recently, mutations within pmrABC two-component system and overexpression of eptA gene due to upstream insertion of ISAba1 have been shown to play a major role. Thus, the aim of our study is to characterize colistin resistance mechanisms among the clinical isolates of A. baumannii in India. A total of 207 clinical isolates of A. baumannii collected from 2016 to 2019 were included in this study. Mutations within lipid A biosynthesis and pmrABC genes were characterized by whole-genome shotgun sequencing. Twenty-eight complete genomes were further characterized by hybrid assembly approach to study insertional inactivation of lpx genes and the association of ISAba1-eptA. Several single point mutations (SNPs), like M12I in pmrA, A138T and A444V in pmrB, and E117K in lpxD, were identified. We are the first to report two novel SNPs (T7I and V383I) in the pmrC gene. Among the five colistin-resistant A. baumannii isolates where complete genome was available, the analysis showed that three of the five isolates had ISAba1 insertion upstream of eptA. No mcr genes were identified among the isolates. We mapped the SNPs on the respective protein structures to understand the effect on the protein activity. We found that majority of the SNPs had little effect on the putative protein function; however, some SNPs might destabilize the local structure. Our study highlights the diversity of colistin resistance mechanisms occurring in A. baumannii, and ISAba1-driven eptA overexpression is responsible for colistin resistance among the Indian isolates.IMPORTANCEAcinetobacter baumannii is a Gram-negative, emerging and opportunistic bacterial pathogen that is often associated with a wide range of nosocomial infections. The treatment of these infections is hindered by increase in the occurrence of A. baumannii strains that are resistant to most of the existing antibiotics. The current drug of choice to treat the infection caused by A. baumannii is colistin, but unfortunately, the bacteria started to show resistance to the last-resort antibiotic. The loss of lipopolysaccharides and mutations in lipid A biosynthesis genes are the main reasons for the colistin resistance. The present study characterized 207 A. baumannii clinical isolates and constructed complete genomes of 28 isolates to recognize the mechanisms of colistin resistance. We showed the mutations in the colistin-resistant variants within genes essential for lipid A biosynthesis and that cause these isolates to lose the ability to produce lipopolysaccharides.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Acinetobacter baumannii/genética , Lipídeo A , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Genômica , Carbapenêmicos/farmacologia
16.
Appl Environ Microbiol ; 90(2): e0165423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38206028

RESUMO

Acinetobacter baumannii, an important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental A. baumannii and other Acinetobacter species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 Acinetobacter isolates representing 6 different species sourced from aquatic environments in South Australia. All 10 isolates were phylogenetically distinct compared to clinical and other non-clinical Acinetobacter strains, often tens of thousands of single-nucleotide polymorphisms from their nearest neighbors. Despite the genetic divergence, we identified pdif modules (sections of mobilized DNA) carrying clinically important antimicrobial resistance genes in species other than A. baumannii, including carbapenemase oxa58, tetracycline resistance gene tet(39), and macrolide resistance genes msr(E)-mph(E). These pdif modules were located on plasmids with high sequence identity to those circulating in globally distributed A. baumannii ST1 and ST2 clones. The environmental A. baumannii isolate characterized here (SAAb472; ST350) did not possess any native plasmids; however, it could capture two clinically important plasmids (pRAY and pACICU2) with high transfer frequencies. Furthermore, A. baumannii SAAb472 possessed virulence genes and a capsular polysaccharide type analogous to clinical strains. Our findings highlight the potential for environmental Acinetobacter species to acquire and disseminate clinically important antimicrobial resistance genes, underscoring the need for further research into the ecology and evolution of this important genus.IMPORTANCEAntimicrobial resistance (AMR) is a global threat to human, animal, and environmental health. Studying AMR in environmental bacteria is crucial to understand the emergence and dissemination of resistance genes and pathogens, and to identify potential reservoirs and transmission routes. This study provides novel insights into the genomic diversity and AMR potential of environmental Acinetobacter species. By comparing the genomes of aquatic Acinetobacter isolates with clinical and non-clinical strains, we revealed that they are highly divergent yet carry pdif modules that encode resistance to antibiotics commonly used in clinical settings. We also demonstrated that an environmental A. baumannii isolate can acquire clinically relevant plasmids and carries virulence factors similar to those of hospital-associated strains. These findings suggest that environmental Acinetobacter species may serve as reservoirs and vectors of clinically important genes. Consequently, further research is warranted to comprehensively understand the ecology and evolution of this genus.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/microbiologia , Macrolídeos , Plasmídeos/genética , Acinetobacter baumannii/genética , Genômica , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
17.
J Burn Care Res ; 45(2): 487-492, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37971422

RESUMO

Thermal injuries lead to a deficiency in one's natural, protective barrier, resulting in increased susceptibility to pathogens, and often require multiple courses of broad-spectrum antibiotics. Eravacycline (ERA) has shown adequate in vitro activity against multiple multi-drug resistant (MDR) pathogens including Acinetobacter sp. Due to the increasing prevalence of MDR bacteria and the heightened susceptibility of patients with burns to infection, studies are needed to examine the clinical effect of eravacycline in this population. The objective of this retrospective, case-control study was to compare the outcomes of patients with thermal injuries treated with eravacycline versus a matched control for carbapenem-resistant Acinetobacter baumannii (CRAB) infections. Patients with thermal injury admitted to an American Burn Associated-verified burn center from May 1, 2019 to July 31, 2022, who received eravacycline, were randomly matched 4:1 to a historical cohort using a previously established, de-identified dataset of patients treated with colistimethate sodium (CMS) in the same burn center (March 1, 2009 to March 31, 2014), based on % total body surface area (%TBSA), age, and CRAB. A composite favorable outcome was defined as 30-day survival, completion of the course, lack of 14-day recurrence, and lack of acute kidney injury (AKI). Treatment with eravacycline over CMS was not more or less likely to be associated with a favorable response [odds ratio (95% confidence interval), 2.066 (0.456-9.361), P = .347]. Patients treated with CMS had nearly 9-fold higher odds of new-onset AKI versus ERA [8.816 (0.911-85.308), P = .06]. Adverse events were uncommon in the ERA group. There was no difference in mortality.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Injúria Renal Aguda , Queimaduras , Tetraciclinas , Humanos , Estudos Retrospectivos , Estudos de Casos e Controles , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia
18.
ACS Infect Dis ; 10(1): 184-195, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991817

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) strains are prevalent worldwide and represent a major threat to public health. However, treatment options for infections caused by CRAB are very limited as they are resistant to most of the commonly used antibiotics. Consequently, understanding the mechanisms underlying carbapenem resistance and restoring bacterial susceptibility to carbapenems hold immense importance. The present study used gas chromatography-mass spectrometry (GC-MS)-based metabolomics to investigate the metabolic mechanisms of antibiotic resistance in clinically isolated CRAB. Inactivation of the pyruvate cycle and purine metabolism is the most typical characteristic of CRAB. The CRAB exhibited a reduction in the activity of enzymes involved in the pyruvate cycle, proton motive force, and ATP levels. This decline in central carbon metabolism resulted in a decrease in the metabolic flux of the α-ketoglutarate-glutamate-glutamine pathway toward purine metabolism, ultimately leading to a decline in adenine nucleotide interconversion. Exogenous adenosine monophosphate (AMP) and adenosine triphosphate (ATP) enhance the killing efficacy of Meropenem against CRAB. The combination of ATP and Meropenem also has a synergistic effect on eliminating CRAB persisters and the biofilm, as well as protecting mice against peritonitis-sepsis. This study presents a novel therapeutic modality to treat infections caused by CRAB based on the metabolism reprogramming strategy.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Animais , Camundongos , Meropeném/farmacologia , Meropeném/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Trifosfato de Adenosina , Piruvatos/uso terapêutico , Purinas
19.
Int J Antimicrob Agents ; 63(1): 107044, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040319

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) infection is common worldwide. Despite carbapenem resistance, standard-dose carbapenems are still used in clinical practice. Hence in this study, we aimed to compare the efficacy and outcomes of a regimen containing standard-dose carbapenems with those of a regimen lacking carbapenems during the treatment of critically ill patients with CRAB nosocomial pneumonia in the intensive care unit (ICU). Initially, 735 patients were recruited for this multicentre retrospective cohort study. After exclusion, time-window bias adjustment, and propensity score matching, multiple clinical outcomes were compared between the carbapenem-containing (CC) (n = 166) and no carbapenem-containing (NCC) (n = 166) groups. The CC group showed a higher risk of clinical failure on day 7 than the NCC group (44.6% vs. 33.1%, P = 0.043). The lengths of ICU stay (21 and 16 days, P = 0.024) and hospital stay (61 and 44 days, P = 0.003) were longer in the CC group than in the NCC group. Multivariate analysis showed that the CC regimen was associated with higher clinical failure (adjusted odds ratio (aOR) = 1.64, 95% CI = 1.05-2.56, P = 0.031) and lower microbiological eradication (aOR = 0.48, 95% CI = 0.23-1.00, P = 0.049) at day 7 than the NCC group. Thus, a regimen containing a standard dose of carbapenem should be prescribed with caution for treating CRAB nosocomial pneumonia in the ICU.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecção Hospitalar , Pneumonia Associada a Assistência à Saúde , Humanos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Pneumonia Associada a Assistência à Saúde/tratamento farmacológico , Unidades de Terapia Intensiva , Pontuação de Propensão , Estudos Retrospectivos
20.
Clin Infect Dis ; 78(2): 248-258, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37738153

RESUMO

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Estudos Prospectivos , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...